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Abstract

This report details the development of a new two-equation turbulence closure model based on

the exact turbulent kinetic energy k and the variance of vorticity, 4- The model, which is

applicable to three dimensional flowfields, employs one set of model constants and does not

use damping or wall functions, or geometric factors.
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1 Introduction

The use of Computational Fluid Dynamics, CFD as an engineering design tool

has been accelerating in recent years primarily due to improvements in three major

areas. The first is grid generation, where there are now a multitude of grid generation

software packages available which can generate very complex three-dimensional grids.

The other two areas are somewhat inter-related. Namely, computational speed and

numerical algorithm efficiency. A combination of these two have reduced computa-

tional run times for two-dimensional flowfields from hours to minutes and have scaled

three-dimensional calculations from days or weeks to hours. As the above three areas

are continually refined the cost effectiveness of CFD as a design tool should contin-

ually increase. However, one of the major limitations of existing CFD solvers still

remains. Namely, the inability to accurately solve complex turbulent flowfields. And,

since the majority of flows of practical engineering interest are turbulent, this has

become one of the most significant hindrances in the use of CFD as an engineering

design tool.

CFD is being applied to a wide variety of applications: jet inlet design, weather

prediction, High Speed Civil Transport (HSCT), National Aerospace Plane (NASP),

missile aerodynamics, combustor design, and high angle of attack airfoils, just to

name a few. One common feature of all of the above is that an accurate prediction

of drag, heating, and mixing rates is paramount in the design/analysis process. In
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turn, theseparametersare highly dependenton an accurate solution of the turbu-

lent flowfield. Inaccurateturbulent solutionscancauseorder of magnitudevariations

in thesedesignparameters. Therefore, the goal of the current work is to developa

computational model which improvesthe accuracy of CFD solutions when analyz-

ing extremely complexturbulent flowfields. Concentration will be focusedon flows

which contain a combinationof freeshear layers, shockwaves,large adversepressure

gradients,and largeseparatedregions.

Beforea discussionof the solution can begin a generaldescription of turbulence

is warranted. The most notable featureof a turbulent flowfield is seenby examining

the velocity, or pressure,at a point in space,and noting that they are not constant

in time. Rather, they exhibit very high frequency,irregular, three-dimensionalfluc-

tuations. Note that these fluctuations are three-dimensional,even for flows with a

mean (time averaged)velocity field which is two-dimensional. The fluctuations cause

three primary difficulties to arisewhen attempting to describea turbulent flowfield.

First, becauseit is a largely random process,we must rely on statistical methods

to describea turbulent flowfield. Second,we know that turbulent flows are highly

rotational and three-dimensional.This inherent three-dimensionality is seenby ex-

amining the vorticity equation and noting that the vortex stretching term (absentfor

two-dimensional flows) is required to maintain the rotationality seenin a turbulent

flow. This implies that there canbe no adequatetwo-dimensionalapproximations to

describea turbulent flowfield. Finally, turbulence is not a fluid property (e.g. molec-
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ular viscosityor thermal conductivity), rather, it is a property of the flow. Therefore,

the initial/boundary conditions will play a major role and an a priori description of

turbulence is not possible. Note that the preceding discussion was by no means an

attempt to completely describe the physics behind a turbulent fow. Instead, it is an

attempt to explain the difficulties associated with the CFD solution of a turbulent

flowfield. For a more complete description of the physics of turbulence see Tennekes

and Lumley 1.

To date, there are three basic approaches to solving a turbulent flowfield. The

first, Direct Numerical Simulation (DNS), is a time dependent, three-dimensional

solution of the Navier-Stokes (NS) equations. In order to accurately capture the

turbulent features of the flowfield, all of the relevant scales (time and length) must be

resolved. An estimate for the number of grid points required 1 to capture the spatial

scales is typically given as Re_, and therefore, for practical Reynolds numbers on the

order of 10 6, this method is obviously not a feasible approach. It should be noted,

however, that DNS is extremely useful for a limited range of low Reynolds number

cases and, therefore, can be used as an invaluable tool in the testing/development of

more practical turbulence models.

The next approach, Large Eddy Simulation (LES), involves splitting the flowfield

such that the larger scales are computed directly and the smallest scale are modeled.

As a result LES is also a relatively expensive calculation and turbulence modeling is

still required for the smallest scales.
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The final method doesnot attempt to resolve the turbulent scales. Rather, a

model is derivedwhichpredicts the 'effect' of the turbulenceon the mean (time aver-

aged)flow. The 'effect' of the turbulence on the mean flow is determined by employing

the Reynolds Averaging procedure, whereby, each quantity of interest (velocity, pres-

sure) is decomposed into a mean and a fluctuating component. After substituting the

decomposed variables into the instantaneous Navier-Stokes (NS) equations and ap-

plying a time average, two additional unknowns are produced due to the non-linearity

of the NS equations. These unknowns, the turbulent stresses and the turbulent heat

fluxes, represent the effect of the turbulence on the mean (time averaged) equations.

The problem of turbulence modeling is, therefore, to devise a method of accurately

calculating these two unknown quantities.

There are a variety of methods which can be used to calculate the effect of the

turbulence on the mean flow (Algebraic, One-Equation, Two-Equation, Reynolds

Stress). We chose a two-equation turbulence closure model so that, at a minimum, the

following criterion are met. First, the model should be "complete", where complete

refers to the fact that we only want to have to specify the initial and boundary

conditions. This criterion requires that the closure coefficients must be constant (or

a function of turbulent Reynolds number, Rt) for all of the flows considered. Next,

the turbulence model must be able to solve both free shear (wakes, jets, and mixing-

layers) and wall bounded flows. General design problems typically will include a

combination of the above flow regimes for a given problem and it is not feasible to
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haveto usedifferent turbulencemodelsfor eachof thedifferent regionsof the flowfield.

Finally, the turbulencemodelshouldbe ableto solveboth two and three-dimensional

flowsand should be computationally efficient when usedin either a boundary-layer

or Navier-Stokessolver.

Given the aboverequirements,and noting that existing two-equation modelsare

unable to meet thesecriterion, wechoseto developa new turbulence closuremodel.

The decision to develop a new model, rather than modify an existing model, was

influenced primarily by the following limitations of existing two-equation models.

First, linear k -e and k -co models are incapable of describing wall bounded and free

shear flows using the same set of model constants and boundary conditions 2. Also,

existing two-equation models are, in general, unable to predict separated flows 2, 3

Finally, existing models were originally developed for high Rt flows, but are being

employed in situations where Rt is low through the addition of asymptotic expansions

or ad hoc terms. Based on the above, we chose not to modify an existing model, but

rather, to develop a new model based on the exact turbulent kinetic energy (k = _uCui)l-,_ ,_

and the variance of vorticity, or enstrophy (¢ = co_w_).

The development of the current model is shown beginning with a derivation of the

exact k-_ equations. Then the modeling is provided along with an explanation of how

the closure coefficients were evaluated. Once the development has been presented the

capabilities of the k- C model are examined, and modifications made, by considering

a variety of flows. First, several free shear flows are considered and the k-( results



are comparedwith the k-e model as well as with an abundance of experimental data.

Next, a flat plate and its wake are considered. The flat plate results are compared

with the near wall measurements of Schubauer 4 and Laufer _ and the wake results were

compared to the experimental data of Pot 6 and Weygandt and Mehta 7. Additionally,

a variety of two-dimensional airfoils are examined and the results are compared with

the Johnson-King model s, the k-w model 2, and with experiment. Finally, the model

is examined for a supersonic three-dimensional Cylinder-Flare and is compared with

the experimental data of Wideman et al 9 as well as the k-e model.
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2.1

Turbulence Modeling

Reynolds Averaging

The instantaneous Navier-Stokes equations in a compressible medium are given

a.s

Op 0 (pu,)
o---i+ - o (2.1)Oxi

o (p_,) O(p_ju,) Op o (tj,)
O_ + Ox_ - Oxi + Ox----ff (2.2)

1 OFpu[h[_, 1 0 Oqi0 [P(e+_uiui)]+ + (2.3)

with the following constitutive relations

20um 5 1 (Oui Ouj)
tij= 2#sq--3#_x_ q ' so = 2 kOxj + Oxi/ (2.4)

-# Oh

qJ -- Prt Oxj (2.5)

where tji, It, Sij, and Prl are the viscous stress tensor, molecular viscosity, strain rate

tensor, and laminar Prandtl number, respectively. It should be noted that in order to

simplify the current discussion, only incompressible flows (constant p) are considered.

For an incompressible medium the Navier-Stokes equations (2.1-2.3) reduce to

C_U i

-0 (2.6)
Oxi

Ou_ Ou_ Op Orj,
p--_- + puj Oxj Oxi + Oxj (2.7)

and the constitutive (Eq. 2.4-2.5) relations become

1 (Oui Ouj_
t,j = 2Its o , sq = _ \ Ozj + Ox_ ]

(2.8)



It should be noted that the energy equation was omitted from the previous equa-

tion set. This is due to the fact that, for an incompressible flow, the energy equation

is completely decoupled from the conservation of mass/momentum and, therefore,

will be excluded from the current discussion. An in depth discussion of the energy

equation and its relation to solving turbulent flows can be found in Refs.[10, 11].

The solution procedure for the current work does not attempt to resolve (spa-

tially or temporally) all of the high frequency fluctuations which occur in a turbulent

flowfield. Rather, the goal is to calculate the mean (time averaged) effect of these

fluctuations on the mean flow. This statistical approach is achieved through the

Reynolds averaging procedure which begins by decomposing the instantaneous quan-

tities of interest (velocity and pressure) into a mean and fluctuating component.

q(_,,t) = Q(_) + q'(_,t) (2.9)

where Q(_) is the time averaged mean component, i.e.

Q(Z) = lim 1 "/t+:_ q(Z,t)dt
T-+oo "r J t

(2.10)

and q'(Z, t) is the turbulent fluctuation. Since it is not feasible to resolve the turbulent

fluctuations, we are instead interested in determining the effect of these fluctuations

on the mean flow.

After decomposing the Navier-Stokes equations (Eqs. 2.6-2.7) and applying the

above time average we are left with the Reynolds Averaged Navier-Stokes equations



for an incompressiblefluid.

0gi
-0 (2.11)

Oxi

OU_ OUi OP 0 /

p---_- (2.121
Oxj Oxi

where Ui, P, Sij are the mean velocity, pressure, and strain rate, respectively, and u_

represents the fluctuating velocity. By comparing eqs. (2.6-2.7) with eqs. (2.11-2.12)

it is seen that aside from the replacement of the instantaneous variables by the mean

values, the only difference between the instantaneous equations and the time-averaged

equations is the appearance of a momentum flux which acts as an apparent stress.

This additional parameter

' ' (2.13)Tij = --PUiU j

is referred to as the turbulent or Reynolds stress tensor. In order to solve the time

averaged equations of motion for the mean flow properties, we must have a means of

computing Tij. A similar procedure applied to the energy equation produces an un-

t I
known turbulent heat flux vector, qtj = -pujh. Since the current work concentrated

on incompressible flows the procedure for calculating the turbulent heat flux vector

is deferred to Refs.[10, 11]).

The calculation of a turbulent flowfield has now become dependent on the accu-

rate calculation of the Reynolds stress tensor. It should be noted that an equation

for the Reynolds stress, -pu_u_- can be derived (see Appendix A), by taking higher

moments of the Navier-Stokes equations. However, when these moments are taken,
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additional unknownsare generated(third order correlations). This inability to close

the equation set (i.e. more unknownsthan equations) is known as the 'turbulence

closure' problemand is due to the non-linearity of the Navier-Stokesequations.The

purposeof turbulencemodeling is to deviseapproximationsfor the unknownsin terms

of the known flow propertiesin sucha way that the number of equationsis equal to

the numberof unknowns.

2.2 Eddy Viscosity

By examining the molecular transport of momentum 2, the kinetic theory of gases

provides an expression which relates the viscous stress tensor to the strain rate tensor

t,j = 2.s,j (2.14)

Iz = _pVthlrnlp (2.15)

where Vth is the thermal velocity and lmlp is the mean free path. By making an analogy

between the behavior of turbulent fluctuations and random molecular fluctuations,

an expression for the turbulent viscous stress tensor (Reynolds stress) in terms of an

apparent or eddy viscosity, #t is obtained.

rzj = 2ptSij (i _ j) (2.16)

1

#t = _pvch_rlchar (2.17)

where Vchar and lchar are some characteristic velocity and length scales representative

of the turbulence. The problem of turbulence modeling has now been reduced to one

through a coefficient of viscosity, #.
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of calculating Eq.(2.17). Keep in mind that although Eqs. (2.15) and (2.17) appear

very similar, they do have one major difference. Namely, the thermal velocity and

mean free path are properties of the fluid, whereas the characteristic velocity and

length scalesare flowfield properties. This differenceis the reasonwhy it is possible

to give an a priori description of # but not #t-

2.2.1 Levels of Modeling

There are several levels of turbulence modeling to consider ranging from the sim-

plest algebraic model to very complex Reynolds stress formulations. A brief descrip-

tion of each method will be included for completeness, however, readers interested in

a more in depth analysis should see Ref. [2].

The first, and simplest method considered, is an algebraic turbulence model. Typ-

ically, the characteristic velocity is given by a simple algebraic relation and the mixing

length is based on some characteristic length of the flow. For wall bounded flows lchar

is often based on normal distance from the wall, and for free shear flows it is typically

proportional to the width of the shear layer. Herein lies the problem for algebraic

models. This proportionality constant varies for each of the different types of free

shear flows. This type of model, which requires a priori information about the flow-

field (other than initial and boundary conditions) is referred to as an "incomplete"

model.

The next level of modeling is termed a one-equation model. Instead of using an

algebraic relation, an equation is solved (typically the turbulent kinetic energy) for the
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characteristicvelocity. This formulation still requires the specification of a turbulent

length scale,and therefore,by analogywith the algebraicmethod, the one-equation

model is also an incompletemodel.

The next level of complexity for turbulence modeling involvessolving two equa-

tions for the twocharacteristicscales.A two-equationformulation is desirablebecause

it is the simplest form of a 'complete' model, wherecompleterefers to the fact that

only initial and boundary conditions for the two-equations must be specified. No

a priori information about the flowfield is required. Higher order 'complete' turbu-

lence models are available such as the Reynolds Stress model, however, solving this

imposes a great deal of complexity since five new equations must be solved for the

five independent components of the Reynolds stress tensor. Another reason for the

choice of a two-equation model over a stress model is due to the fact that most of the

problems with existing turbulence closure models have been traced to an inadequate

dissipation rate equation 12. When this is taken into consideration along with the fact

that solving a Reynolds stress model requires a dissipation rate equation, the choice

of a two-equation model becomes obvious. It should be noted, however, that once an

improved dissipation equation is developed, an extension of the model to a Reynolds

stress formulation becomes the obvious next step.

Prom Eq. (2.17) it is seen that you can solve one equation for a velocity scale and

one equation for a length scale, or alternatively, you can solve for a velocity and a time

scale. This is explained by noting that on dimensional grounds alone, a characteristic
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velocity and length can be combined to give a characteristic time scale. For the

current work we havechosento solveone equation for the turbulent kinetic energy

(characteristicvelocity scale)and one equation for the dissipation rate of turbulent

kinetic energy (characteristic time scale). Since the TKE equation is assumedto

be a well defined/modeledequation,and sincemost of the debateover two-equation

modelsfocuseson the dissipationequation,the current formulation usesthe standard

k equation (see Appendix B) and a new dissipation equation based on the fluctuating

vorticity. It should be pointed out that a variety of other dissipation rate equations

could have been considered (i.e. _, e), however, the reason an equation based on the

fluctuating vorticity was chosen can be seen by noting some predominant processes

occurring in a turbulent flowfield.

Turbulent flows are dominated by three dimensional, highly rotational processes.

Furthermore, vortex stretching is noted to be the most effective means of extracting

energy from the mean flow and transferring it from the large eddies to the smallest

eddies 1. The smallest eddies, in turn, dissipate the energy into heat through molec-

ular viscosity. This predominance of fluctuating vorticity in maintaining a turbulent

flow suggests that a natural route in our search for a second equation (i.e. a charac-

teristic time scale) would be through an examination of the vorticity equation. More

specifically, it will be shown that the fluctuating vorticity can be used to calculate the

dissipation rate as required to close our equation set (see Appendix B). A derivation

of the Enstrophy equation is provided in Appendix D. It should be noted that the
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Enstrophy equation hasalso beenthe subject of detailed investigations by Bernard

and Berger la and Raul and Bernard _4. It should also be noted that the current

formulation for a dissipation equation can be easily incorporated into existing CFD

codesby substituting the enstrophyequation for the 'e' or 'co'equations.

As previouslymentioned,the current method is basedon solvingoneequation for

the turbulent kinetic energy(per unit mass)

1-, , l(u,2 v, 2 w,2)k - -_uiu i = -_ + + (2.1s)

Tij = 2#tSij - 2pkSij

incompressible medium.

(2.21)

where dij is the Kronecker delta. Note that (--}pk_i_) has been added to the stress

relation (Eq. 2.16) to ensure that

7ii -- -pu_u_ (2.22)

and one equation for the enstrophy (vorticity variance)

-- co_co_ (2.19)

where u'i is the fluctuating velocity and co_ is the fluctuating vorticity. We now define

the eddy viscosity as

C"Pk (2.20)
#t - u(

where C u is the structural factor (see Appendix G), p is the density, k is the turbulent

kinetic energy, u is the kinematic molecular viscosity, and _ is the enstrophy. In order

to determine the turbulent stresses we apply the Bousinesq approximation for an
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= -2pk (2.23)

asdefined in Eq. 2.18.

Fromthe abovetwo-equationformulation it isseenthat only the initial and bound-

ary conditions for k and C must be specified, therefore, this type of turbulence model

is a 'complete' model.
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3 Modeling Unknown

Correlations

The derivation of the exact incompressible k-_ equations are given in Appendices B

and D. The final forms have been reproduced here for convenience.

Dk rijOUi Ou_Ou_ 0 [ Ok 1-- p'p_] (3.1)D---[- p Oxj u Oxk Oxk + _ u Ox3 2 u_u_u_

D( 0
! ! t t t t I l

-5i = --u yi Ox--- j oz j

u n--2-7- - 2u-- (3.2)
Ox m c3xj Oxj

Now that we have our equation set the next step is to model the unknown quanti-

ties in terms of known flow variables. The manner in which this is done represents the

primary difference between the k-_ model and other two-equation models. Tradition-

ally, the high turbulent Reynolds number hypothesis is employed, whereby, the largest

scales are unaffected by the fluid's viscosity and the smallest scales are isotropic, or

independent of the larger scales. If the smallest scales are independent of the mean

flow, this implies the following terms (which are dependent on the mean flow) from

Eq. (3.2) can be neglected

, ;Of_i

2ujwi_--_-x, 2w:w}S,j, 2a3_:s_j (3.3)

The above terms represent the fine scale correlations which describe the detailed

mechanism of the dissipation process and thereby control the near wall behavior.
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Thus, theseterms must be retainedif onehopesto accuratelypredict the skin friction

and heat transfer. Therefore,the current model retains and modelseachof the above

describedterms.

In addition to retaining all of the fine scale terms in the exact equationsa set of

modelingguidelinesweredevelopedin order to imposea consistencyto the modeling

processand alsoin the hopesof moreaccurately capturing the underlying physics. It

shouldbe noted that theseguidelinesare necessary,but not sufficient conditions, for

modelingthe unknowncorrelations.

1) Dimensionalconsistencywasenforced.

2) All modelingmaintained coordinatesystem independence.

3) Gallilean Invariance was imposed.

4) All modeling was based on linear relationships ; this is consistent with Eq. 2.21

During the modeling we encountered a number of second order symmetric and

skew-symmetric tensors which required modeling. In order to be mathematically

consistent the unknown symmetric tensors are modeled using known symmetric ten-

sots, namely, Tq, Sij, and _q. Similarly, the skew-symmetric tensors are modeled

( o___) The modeling for each of the six unknownusing f_ij, eijk and o_ __ o__kk
' _Oxj Oxj O_i "

terms is shown in Appendix E, with the resulting equation set shown below.

pN=',mox-:

D( emq 0 (umut) Ok 0 #t O( p135 (_
PDt =-5- 0-7- "+

(3.4)
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where

(o_3p_bij + Sij+ _Sijp_) kf} + 2_S_ilm _ OZ,n S 2

_ 2fl6Vij_'tf_f_.f_. /3Tp(f} _2 Sz
ku ' 3+_ _ j J+

ap (°P_ 2 3

F a2M} {OUi_]2
(3.5)

2= k2f.
rij = 2#tSij - d6iJpk , vt = C. v_

S 2 = SijSij , _-_2 = _i_i

k

Rk- uV'_ ' R_= R_

Now that we have the modeled k-{ equation set, all that is remaining is to deter-

mine the appropriate boundary conditions and calculate the unknown closure coeffi-

cients (OL3, _4, _5, _]6, _7, _8, O'k, (7_, O'p, (TO).
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4 Boundary Conditions

With the current formulation for solving turbulence we have introduced two ad-

ditional unknowns to our equation set, namely, k, and _. A wall and free stream

(subscripts w and oc, respectively) boundary condition is required for each of the

added variables.

At the wall it can be shown that k and its derivative are zero and _ is finite (see

Appendix I). Therefore, we have

k_=0 (4.1)

°k w 0 (4.2/077

_" has no physical boundary condition at a solid surface.

For the current work we have examined two boundary conditions for _'w- The first

was a simple first order extrapolation, i.e. we set

0r/O--_w = 0 (4.3)

where r/is the normal coordinate from the surface. The second boundary condition for

_, was developed from Eq. (4.2) and the k equation. In the near wall region both the

convection and production terms are negligible, and therefore, for an incompressible

flow Eq. (3.1) reduces to

o [loll
a-y [g_yyJ = _w (4.4)
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If we define a one-sided difference as

Oq qj+l - qj

Oy Yj+I - Yj
(4.5)

and we use a subscript convention of 1 and 2 to denote the the first and second points

off of the wall, respectively, then we end up with

or, using Eq. (4.2)

l [ Ok 1 Ok]¢_- 3Ayl _yy - _yy_ (4.6)

1 Ok

3Ayl -_y 1

(k2 - kl)
i

3/kyl/ky2
(4.7)

where,

Ayl =y2-yl (4.8)

The merits of both boundary conditions will be discussed in the results section where

the simple extrapolation is labeled as bcl and the above formula (Eq. 4.7) is labeled

as bc2.

Now, all that is remaining is to specify the free stream values for each of the three

variables. This is done by specifying a turbulent intensity, 7" and a ratio of turbulent

to laminar stresses, (_)_ and solving for the remaining variable, Coo.

The turbulent intensity is defined as

T= lu'--j-I (4.9)
Uoo
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and if you assume the flow is isotropic (u' = v' = w') in the free stream k can be

written as

3 r2

k_ = -u (4.10)2

Eqs. 4.9-4.10 can be combined to give

3 (TU_)2 (4.11)

The turbulent intensity is often provided by experiment and is typically O (1%).

It should be noted that as you leave the boundary layer and approach the free

stream all variables, k, _', and #t, decay to small values. Transients during the solution

k 2
procedure can cause large spikes in the at. ratio since #t is defined as a ratio of -(. In

order to prevent numerical difficulties resulting from dividing by a very small number,

a bound is placed on the allowable values of at. This limit is derived by examining

the isotropic decay of homogeneous turbulence (see Appendix K) and is given as

2

<c. (Z/: 2)

where C., ¢_5, and 5 are constants (see Table 9.3)
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5 Evaluation of Closure

Coefficients

The final step in the development of the k-( model is the determination of the

unknown closure coefficients. This procedure was accomplished in four stages: a log-

law analysis, an examination of similarity solutions for free shear flows, a boundary

layer solution of a flat plate and its wake, and a number of Navier-Stokes solutions for

more complex flowfields. A brief description of each method will be provided along

with an explanation of why the method was chosen.

5.1 Log-Law Analysis

The log-law refers to a region of the boundary layer over which a logarithmic

velocity profile is valid. If we examine the k-_ equation set in this region, and ensure

that the correct scaling is met, the following relation is obtained.

6_; 2

(5.1)

This has allowed us to express one of our unknown closure coefficients in terms

of the others, thereby, reducing the amount of unknowns by one. A more in-depth

explanation of the log-law region, as well as a derivation of Equation (5.1) is provided

in Appendix G.
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5.2 Similarity Solutions

A number of model constants were chosen in order to optimize the solutions for

a variety of free shear flows. The free shear flows considered for the current research

include wakes, mixing-layers and a variety of jets (planar, round, and radial).

This method of determining model constants was chosen for several reasons, the

first of which being, free shear flows, by definition, are not bounded by solid surfaces,

and therefore, the complications imposed by solid boundaries can be avoided during

the initial evaluation of the turbulence model. These complications include, amongst

others, a vanishing turbulent Reynolds number and the lack of physical boundary

conditions for the dissipation equation (_) at a solid surface.

Another reason free shear flows were chosen was due to the fact that, for each

of the flows under consideration, a self-similar (or self-preserving) mean flow state

is attained far downstream of the generating body. This self-similarity implies that,

at a sufficient distance downstream, the profiles become invariant if plotted against

a similarity variable, _. In other words, the equations are transformed from an x-

y to an X-rl coordinate system (where 71 = yf(x)). Then, for the types of flows

under consideration, it is possible to eliminate the x-dependence, thereby reducing the

partial differential equations to ordinary differential equations (ODE). These ODE's

are not computationally intensive, and therefore, a large number of model constants

can be evaluated with very little effort.

An additional reason for choosing free shear flows to calibrate the turbulence
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model is because of the vast database of experimental data. This abundance of

turbulent data for free shear flows allows one to easily evaluate a given model for

a wide variety of flowfields. It should be noted, however, that there was a lack

of consistency amongst the various experiments in measurements of the turbulent

kinetic energy and the normal stresses. Therefore, the constants were optimized by

emphasizing a comparison with measured growth rates and maximum shear stresses,

which were in close agreement (within 10%) in the various experiments.

The final reason free shear flows were used as a starting point for determining

closure coefficients stems from the consideration that if the new model is incapable of

predicting growth rates and shear distributions of all free shear layers, then it can not

have any advantage over existing k-e and k-w models and, as such, merits no further

development.

It seems logical that if a model can not predict simple free shear flows, then it

would have difficulty in accurately predicting a turbulent flowfield over a complex

vehicle. Therefore, the obvious place to begin an optimization of a generalized tur-

bulence model was through the examination of a variety of free shear flows.

5.3 Boundary Layer Solutions

The next step in determining the model constants is to test and refine the model

for a wall bounded flow. A boundary layer solution 15 was chosen for this task due

to its computational simplicity. This is a result of the fact that boundary layer code

run times are much smaller than for a Navier-Stokes solver. A brief description of the
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methodology usedin the boundary layer code is provided in Appendix H. Because

boundary layer codescannot handle separated flows, further developmentrequired

the useof a Navier-Stokessolver.

5.4 Navier-Stokes Solutions

Up to this point we have considered a variety of methods which make a number of

simplifying assumptions about the flowfield in order to reduce the complexity of the

Navier-Stokes equations. However, there are many flowfield features which cannot be

examined using the simplified methods discussed up to this point. These include, but

are not limited to, stagnation points, shockwaves, large adverse pressure gradients,

and separated flows. In order to assess the models performance in and around these

types of flow features, a Navier-Stokes solver must be employed. A description of the

two Navier-Stokes solvers 1°, 16 employed in the current research will be included in

the results section.

Initially, the Navier-Stokes solver was used to examine a variety of two-dimensional

airfoils, the purpose of which was twofold. First was the development and evaluation

of a pressure gradient term, and second was an assessment of the k-_'s numerical

stability. Once the development and validation was completed for the two-dimensional

cases, the performance of the model for a three-dimensional supersonic Cylinder-Flare

was examined.
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6 k-C Modifications

The previous section described how the closure coefficients were evaluated, how-

ever, it is important to recognize that this was an iterative procedure. As the research

progressed from the simpler to the more complex flows it was often discovered that

a particular choice of modeling was inappropriate. Terms were re-modeled and the

procedure was repeated until we reached the current state of the model. The modi-

fications of the original model warrant special attention, and therefore, a discussion

of each has been included below. The final form of the modeled k-_ equation set,

including all of the modifications discussed below are shown in Appendix L

6.1 /35 Term

The 135 term is one of the dominant dissipation terms in the enstrophy equation.

Originally it was modeled as

/:J'5_'_ (6.1)
Rk

for the free shear layers. However, when examining wall bounded flows Rk is zero at

the wall. It should be noted that for the current work the finite volume approach

was used so this term is never actually evaluated at the wall. However, as the wall is

approached Rk can become extremely small, thus causing numerical problems. This

numerical difficulty is a result of allowing the turbulence time scale to be less than

Kologomorov's time scale. Calculation of Rk using Kolomogorov's microscales 1 yields
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avalueof about unity, (.9(1). To enforce the requirement that the turbulent time scale

can not be less than Kolmogorov's time scale, the dissipation term can be written as

Rk +_
(6.2)

• (Z= 1+ ,, -CAJj

model was implemented using the following form for the wall damping function

There is no unanimity on the form of fu in the near wall region 17. Initially is the k-_

(6.5)

(6.6)

An examination of the above expression reveals that this term is unity except for

a very small region near the surface (y+ < 100). The problem with employing a wall

by a wall damping function, fu.

pCuk2f" (6.4)

where 6 = O(1). Determination of 5 will be explained in the next section on wall

damping functions.

6.2 Wall Damping Functions

For high turbulent Reynold's numbers the eddy viscosity is defined as

PC"k2 (6.3)
#t - v_

For wall bounded flows the eddy viscosity and the turbulent Reynolds number are

both zero at the wall. Because of this the above expression is traditionally multiplied
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damping function is the introduction of geometricaldependenceinto the model. The

'y' is the normal distanceto the nearestwall, however,for complexthree-dimensional

flows its calculation is somewhatcumbersome.Therefore, in order to make the k-_

model more amenable to three-dimensional solutions, the wall damping function has

been eliminated in recent implementations[19].

During the modeling process (see Appendix E) the following

_"' i0_' (6.7)
-- ZUj_di C_X'--_5

was re-written using a symmetric and a skew-symmetric term with the symmetric

portion being modeled as

2or (6.8)

The above term does not contribute to the similarity solution of free shear flows,

and as a result, aT was assigned a value based on log-layer considerations which

was inappropriate. Later, it was shown that the value of ar was somewhat depen-

dent on the model constants that appeared in the damping function, f_,. A previous

investigation is showed that it was possible to eliminate the ar term by simply modi-

fying the f_, constants. This result raised an interesting question: if one can develop

an f_ that eliminates Eq. (6.8), then can one eliminate fu and keep the above term.

It turned out that this was indeed possible by choosing the model constants ar and

3as

= 0.1 , a,. = 0.07 (6.9)
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From our previousanalysisit wasshownthat 5 = O(1). A major consideration

that entered into the selection of 5 is transition from laminar to turbulent flow. In

the absence of a transition model, small values of 5 are required to allow transition

to take place.

6.3 Symmetric Portion of-zujwiaxj

The symmetric portion of this term is written as (See Appendix E)

2 Oxt Oxm

An evaluation of Eq. 6.10 has shown its impact to be negligible for all of the cases

considered. Furthermore, an examination of this term in a three-dimensional coor-

dinate system reveals that you are required to calculate the derivative of each of

the Reynolds stresses in each direction. This can be quite costly computationally,

and therefore, in order to simplify the k-_ model this term has been neglected. No

noticeable change in results was noticed from the omission of this term.

6.4 Pressure Gradient

In eddy viscosity models such as the k-e and k-w, the production of turbulent

kinetic energy is related to the mean strain rate. This is large in regions of significant

curvature, and therefore, eddy viscosity models typically generate excessive produc-

tion of k in these regions. This in turn increases the value of #t which delays or

inhibits separation.
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The successful models that were developed to address separated flows were aimed

at mimicking conditions that exist in separated regions by reducing eddy viscosity or

turbulent energy production. Thus, the ,Johnson and King s model was designed to

reduce the eddy viscosity in the wake region of boundary layer flows characterized

by adverse pressure gradients. Reduction of the eddy viscosity is also the motivation

behind the shear stress transport model of Mentor 2°' 21. For the current model a

reduction of eddv viscosity in adverse pressure gradient regions can be imposed in

one of two ways. First, one can model the term

0 [_] (6.11)
Oxj

that appears in the k equation (Eq. 3.1)interms ofa mean pressure gradient. This was

attempted by Rao and Hassan 3 but proved to be unsatisfactory.Alternatively,one

can develop a term in the enstrophy equation based on the mean pressure gradient.

Although the pressure does not appear explicitlyin the exact (incompressible) f

equation, the effectof the pressure isnoted by examining the term _ This term
Ozj "

can be expressed as a second derivative of mean velocity which is related to the mean

pressure gradient through the momentum equation. Thus, the _ equation can have

an explicit dependence on the mean pressure gradient. Based on this, the following

term was originally added to the k-_ model

This term produces g, and therefore, reduces the eddy viscosity in an adverse

pressure gradient flow as desired. However, the problem with a term of the above
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form is that its alwayspositive, and therefore, alwaysdissipative of #t, regardless

of whether favorableor adversepressuregradients are considered. The result was

that the aboveterm wasexcessivelydissipative around the leading edgeof airfoils.

In order to correct this problemwe were looking to developa term which took into

accountthe sign of the pressuregradient (i.e. favorableor adverse). This wasdone

by re-modelingthe aboveterm as

0 (pUiP) k_ 1 (6.13)
Oxi vPap (1 + 5p)

where

_ kRt ( Op _2 (6.14)

This term (Eq. 6.13) represents the derivative of pressure along a streamline, and

therefore, is negative (produces #t), and positive (dissipates #t) for favorable and ad-

verse pressure gradients, respectively. The (1 + 5p) is a compressibility correction and

has been added to prevent the pressure gradient term from becoming excessive around

strong shocks. Note that, in the absence of mean pressure gradients, the modeling

reverts to that appropriate for constant pressure solutions. Thus, no adjustments

in the previously calibrated model constants are necessary. It should also be noted

that there are a number of possible methods for modeling the pressure gradient term.

Therefore, Eq. 6.13 should be considered a tentative term until the efficacy of other

forms can be examined.
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Transition Modifications

Modifications to the k-( model which take into account compressibility effects are

currently being developed by klexopoulos TM22. He has developed a number of com-

pressibility terms (see C1, C;_ terms in Appendix L), all of which have been included

in the current results. These additional terms have had very little effect, as expected,

since the cases currently being considered were all either subsonic or transonic, or as-

sumed adiabatic walls (Cylinder-Flare). Also, a transition model has been developed

by Warren 23, 24, 22 based on the k-( model. This transition model was not used for

the current results. For an in depth discussion of both compressibility and transition

and how they relate to the k-( model the reader is referred to Refs.[ll] and [25].

6.6 Numerical Stability Modifications

The current model, like all turbulence closure models, requires some modification

to improve its numerical stability. The first stability improvement is made by setting

a minimum ( in the Navier-Stokes codes. The reason for this minimum can be seen

by examining the typical behavior of k and (. The enstrophy is finite at the wall,

attains a maximum in the boundary layer, and decays to some small value outside

of the boundary layer. Similarly, k is zero at the wall, reaches a maximum in the

boundary layer, and then decays to some small value outside the boundary layer. An

examination of #t

C_,pk 2

#t- u( (6.15)
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showsthat sinceboth k and _"are rapidly approaching very small values at the edge of

the boundary layer, numerical instabilities can arise. In order to improve the stability

and prevent oscillations in #t a floor is typically set for the dissipation, _. For the

current work a minimum _ is set as

/0=/_ = max _,-_

Minimums as large as ;-_ were evaluated and shown to have no effect on the final10 _

converged solution.

Two additional modifications were made in order to improve the numerical sta-

bility of the model. Namely, both the pressure gradient and _3s terms are maxed with

zero (See Appendix L. This forces both terms to be shut off in regions where they

dissipate _ (produce #t)- For the pressure gradient term this was done because this

term produced excessive #t around the leading edge of the airfoils. It should be noted

that this is only a transient phenomena which occurs during the convergence of the

solution. Once the solution converges the max can be removed without adversely

effecting the final solution. A similar procedure applies for the/38 term.

6.7 Summary of Modifications

It should be noted that as modifications to the model are made one underlying

assumption must hold. Namely, that the modification does not affect the previously

considered cases. In other words, the addition of the 6 to the/35 term to improve the

results for the wall bounded flows can not affect the free shear results. Similarly, the
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addition/removal of a wall dampingfunction can not affecteither the boundary layer

solution of the flat plate or the free shearresults. This assumptionholds for eachof

the additional modificationsmadein this section. Also, asadditional modification are

madewhich take into accountmore complexflowfield features (e.g. compressibility,

combustion,ere), this assumptionmust remain valid in order to developa generalized

turbulenceclosuremodelcapableof solving complex three-dimensionalflows.

The final form of the k-( model with all of the aforementioned modifications,

including the compressibility terms developed by Alexopoulos TM22 can be seen in

Appendix L.
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7

7.1

Results

Free Shear Layer

For the free shear layers we have compared the current model to both experimental

data and the results from the k-e turbulence model. The results from the k-w model

were not included due to the fact that the free stream boundary condition for w must

be adjusted for each of the different types of shear flows.

We begin with the results for the self-similar incompressible planar wake. A

schematic of this flowfield is shown in Figure (10.1). Figure (10.2) shows the defect

velocity, W (non-dimensionalized by centerline defect velocity Wo) versus y (non-

dimensionalized by wake width). For this case we have compared with a variety of

profiles at various _ locations from the experiments of Pate126 as well as with the k-e

turbulence model. Note that the experimental data shows that a self-similar velocity

profile is obtained at an _ of approximately 79. The k-_ model shows excellent

agreement with experiment and also shows a noted improvement over the k-e model.

Figure (10.3) shows a similar comparison for the shearing stress, T along with the

experimental data of Pot 6. Note, that two sets of data were included at an _ of 960

in order to show the level of asymmetry in the experimental data. Also included was

a comparison with the asymptotic solution obtained by assuming a constant eddy

viscosity, #t. Once again the k-_ model shows excellent agreement with experiment

as well as with the asymptotic solution. Figure (10.4) shows the turbulent kinetic
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energyprofile, and while there wasno available experimental data for this case,it

has beenincluded for completeness.The effect of the improvementsin the velocity

and stressprofilescan also be seenin Table 9.1 which showsa percent error in the

growth rate of 14%and 30%for the k-_ and k-e models, respectively.

The next set of Figures (10.6-10.8) show the comparisons for velocity, shear stress,

and turbulent kinetic energy for the two-dimensional planar jet (see schematic in Fig-

ure 10.5) compared with experiment 2T, 28, 29 and the k-e model. The results between

the k-C and k-e models are essentially identical except for the formers slight over pre-

diction of shear stress. Both models agree extremely well with experimental profiles

and, therefore, both do a very good job of predicting the growth rate (Table 9.1).

Bradbury 2s indicates that his measured spreading rate is not exactly proportional to

x. The departure from true self-preservation, however, is so small than no adjustment

is necessary in Fig. (10.6).

Figures (10.9-10.11) show the comparison of mean velocity, shear stress, and tur-

bulent kinetic energy for the round (axisymmetric) jet along with the results of the

k-e model and experiment 3°, 31 The k-_ model does an excellent job of predicting

the velocity and shear stress profiles. Note, however, that the centerline TKE is un-

der predicted. This is explained by noting that during the optimization process we

were primarily concerned with accurately reproducing growth rates, velocity profiles,

and peak shearing stresses. The primary reason for considering the TKE prediction

to be of secondary importance can be seen by noting that there was a large degree



37

of variation in the measuredTKE for the various experiments,and therefore, these

measurementsweredeemedto be lessreliable. Therefore,weprimarily concentrated

on matching velocity and shear profiles as well as growth rates. Note that the k-(

models prediction of growth rate lies within the experimental range while the k-e

shows a 26% error if compared with the upper bound (Table 9.1).

Figures (10.12-10.14) shows a similar comparison for the radial jet. Although no

experimental data was available, other than growth rates, the plots were included for

completeness and to show the similarity between the k-_ and k-e models. Available

dataa2, 33, 34 suggests that profiles for the radial jet approach those for the plane jet.

Since both models were in good agreement with experiment for the plane jet, the

indicated agreement in Figures (10.12-10.14) is expected. Note that both models did

an excellent job of predicting the growth rate for this case.

The final set of figures (10.16-10.18) show the comparisons for the mixing layer

(see schematic in figure 10.15). In these figures 7/is defined as

(7.1)

where (_)0a' etc., denotes the locations where the ratio of the mean velocity to the

free stream velocity is 0.1, etc. For this case the mean velocity is accurately predicted,

however, the shear stress and TKE both failed to reproduce the experimental data.

The growth rates were within 5% for the k-_ model compared to 15% for the k - e

model. It should be noted that the theory shows good agreement with the predicted

shear stress in the streaming side of the measurements but not with the zero velocity
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side. Pate135points out that measurementswith a normal hot-wire probe became

unreliable in the zerovelocity side. However,no estimateof inaccuraciesweregiven.

Thus, a more accurate measurementin the zero velocity side is neededbefore a

definitive statementcanbe maderegardingpredictions of the theory in this region.

A summaryof the calculatedspreadingrates is shownin Table 9.1. The spreading

rates are defined in a mannerconsistent with that given in Ref. [2]. Moreover, the

e comparison values were obtained from Table 4.2, Ref. [2]. In general, computed

growth rates represent a noted improvement over those obtained from the k - e or

k - w models.

After optimizing the free shear flows and obtaining a tentative set of closure

coefficients the next step was to examine the turbulence model for a wall bounded

flow. This was done by examining the boundary layer solution of a flat plate and its

wake.

7.2 Flat Plate

The next step is to calibrate the k-_ turbulence model for a wall bounded flow.

As was previously discussed, the original form of the model contained a wall damping

function with two unknown closure coefficients ((7,,, C,_). In order to evaluate these

constants an incompressible flow (M -- 0.01) over a flat plate was considered.

Figures (10.19-10.21) show plots of k +, _+, and 7-+ vs. y+ for the near wall region.

The current model is compared with the experimental measurements of Schubauer 4

and Laufer 5 as well as the "average" of the available data 1_. As is seen from the figures,
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the resultscomparewellwith theresultssummarizedin Ref.[17].From Figure (10.19),

it is seenthat the peak valueof k + has been slightly under predicted, however, the

current results occur within the range typical of two-equation models (k + _ 2.8-4.0).

Figure (10.20) shows that both _+ and e+ have a "peak" near the wall. It should be

mentioned that the _+ is not from a solution of the k-e model, rather it is determined

by comparing the k equation for the C model to that of the standard e model and

noting that

2u 02 k

e = ui + 30yOy (7.2)

Therefore, the e+ shown, is that calculated by using the above expression in conjunc-

tion with the solution of the k-_ model. The current model accurately reproduces the

experimental data of Laufer, however, there has been some recent controversy over

the validity of this data in the very near wall region. The DNS data for this case 2

shows no such "peak" in the near wall region.

The constant, 'B' from the log-law relation

u + = lln (y+_ + B
\]

is typically taken to be 5.0. A plot of u + - ¼1ny + shows that 'B' is not exactly

constant, but rather, varies slightly from approximately 4.4 to 5.2 over a y+ range

from 50 to 1000.

The sublayer behavior of the TKE is shown in figure 10.23. Since n (k = koy n)

could not be evaluated at y = 0, a polynomial curve fit was used to obtain a value of



40

2.08 at y = 0. This is in very close agreement with the theoretical value of 2.0 (see

Appendix I).

Figure (10.24) shows the skin friction coefficient (based on edge values) vs. the

vanDriest 36 correlation. Excellent agreement with the current model is shown.

Figure (10.25) shows the wall damping function. Note that this parameter is

non-unity only in a small region very close to the wall (y+ < 80).

Once acceptable results were obtained for the flat plate, the boundary layer solu-

tion was used to examine the near wake properties and as a means of validating the

self-similar wake results. This was done by marching off the end of a flat plate and

continuing the solution procedure downstream until similarity profiles were attained.

Figs. (10.26-10.30) demonstrate the k-_'s prediction of a variety of near wake

parameters including growth rate, centerline defect velocity, and peak shearing stress.

The results of the current model are compared with the experimental data of Pot 6

and Weygandt and Mehta 7 Excellent agreement is indicated. Also shown are the

stress and velocity profiles in the far downstream region. These figures show that a

self-preserving state was attained and that the marching procedure has reproduced

the similarity results within a few percent.

It should be mentioned that all of the figures considered up to this point used

the wall damping function, f_. It should also be noted, however, that elimination of

the wall damping function made no noticeable changes in the flat plate results. This

was the criterion used for the elimination of the damping function. In other words,
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the model had to give the sameresults with or without the f_,. All of the results

for the fiat plate without the damping function were within a couple of percent, and

therefore, they have not been reproduced here. Also, note that the elimination of

the f_, has no effect on the free shear flows since f_, was unity for all of those cases.

All of the remaining results were obtained after the elimination of the wall damping

function.

7.3 Homogeneous Shear Flows

This section examines the predicted decay rates of turbulence in a homogeneous

shear flow. It should be noted that even though the current model constants were

not chosen by considering the decay of homogeneous turbulence, close agreement

with the k - e model, whose constants were chosen to give the correct decay rate for

homogeneous turbulence, is shown in figures 10.32-10.33. This test case was examined

per the suggestion of Reference [37] in order to determine if the current model would

predict an acceptable value of the homogeneous shear parameter s___g_gand also to ensure

that the k-_ model would predict equilibrium (or constant steady state) values for

the shear parameter and for the Reynolds stress anisotropy, b12. Measurements and

DNS as suggest that the shear parameter reaches an equilibrium value between 5 and

6. Figures (10.31-10.32) show that the current model does in fact reach a constant

steady state value and also does predict an acceptible homogeneous shear parameter.

Figures (10.33-10.34) show the comparison of the k-_ and the k-e models in the

prediction of k + and e+. These figures represent the time decay of the turbulent
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quantities and show very similar results between the two models. One final note

should be made regardinghomogeneousshear flows. Namely,that for this casethe

k-_ model gives bll = b22 = b33 = 0, which has been shown to be incorrect [39].

This is not a limitation of the current two-equation model, rather, it is a limitation

in the current Bousinesq approximation. In order to be able to accurately predict

the Reynolds stress anisotropies, the Bousinesq approximation must be modified to

include higher order terms.

7.4 Airfoils

For the airfoil cases a comparison is made with the k-w model of Wilcox 2, the

Johnson-King s model, as well as with experimental data where available. The k-w

model was chosen because it is widely known to have good agreement with experiment

for attached wall bounded flows. The J-K model was included because it is widely

known to accurately predict two-dimensional separated airfoils. The J-K results were

obtained from the calculations of Rumsey and Anderson 4°. Mentor 2° made an issue

of the sensitivity of the k-w model to free stream conditions. In all of the calculations

presented here, koo and (_)oo were selected and corresponding values of _oo and woo

were computed. We believe this is the correct way to compare the two models.

The evaluation of the k-( model for two-dimensional airfoils begins by first ex-

amining the effect of the two boundary conditions. Recall that bcl is a simple of

extrapolation of _ to the wall, whereas, bc2 imposes a k = koy 2 behavior to determine

a wall value of (. The first case considered is a symmetric NACA 0012 airfoil at a
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relatively low Machnumber. This providesa simple flow freeof both shockwavesand

separatedregions.Note from figures 10.35-10.36that both boundary conditions give

nearly identical resultsexceptfor the skin friction, Cle in a small region around the

trailing edge. This is explained by noting that the first boundary condition (simple

extrapolation) gives a near wall k variation very close to the theoretical value (see

Appendix I) of n = 2. Thus, imposing a y2 variation of the near wall k has little to

no effect, as expected. However, this is not the case for the more complex flowfields.

Figures (10.37-10.38) show the same comparisons for the NACA 0012 run with a

transonic Mach number. For this case small variations in Cp can be seen around the

shock, however, large variations in Cfe are noted. When using simple extrapolation,

bcl for more complex flows, large oscillations in the skin friction coefficient can occur,

therefore, for the more complex flows bCl has proven to be inadequate around shocks

(a similar behavior was noted near separated regions). It should also be noted that

bcl proved to be much less numerically stable around shocks, separated regions, and

stagnation points. Therefore, for the remainder of the results section, only bc2 will

be considered.

The next step in evaluating the k-_ model was to ensure that grid independent so-

lutions were being obtained. A grid study was performed for an RAE 2822 transonic

airfoil with a small separated region. Figures (10.39-10.40) show the pressure distri-

bution and skin friction for all grids considered. Both the pressure and skin friction

distributions have proven to be grid independent. The results are nearly identical,
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exceptfor a slight variation in skin friction on the 143x51grid. From this grid analy-

sis it hasbeendeterminedthat the k-_ model requires a minimum of approximately

5 points within the sublayer (y+ < 10). The 321x91 grid had an initial y+ of approxi-

mately 0.2, the 231x51 used y+ _ 1.8, and the 143x51 used y+ _ 3.0. Note, however,

that the deviation in skin friction results were caused not by the initial y+ spacing,

but rather, is was primarily caused by the amount of resolution of the sublaver. In

other words, as long as you have at least 5 points in the sublayer, you may begin with

initial y+ values of 2 or 3 and still obtain accurate solutions. This is important, and

is being discussed in detail, because of the obvious influence on rate of convergence.

Increasing the distance of the first y+ point off of the surface can drastically increase

the rate of convergence of the solution. Note, that for all of the remaining airfoil

cases, an initial y+ between 1 and 2 and approximately 8-10 points in the sublayer

were employed.

Now that the boundary conditions and basic grid requirements have been deter-

mined the next step is to examine the results for a variety of two-dimensional airfoils

beginning with a NACA 4412. The airfoil geometry is shown in figure 10.41. This

case is a low subsonic (M = 0.2) stalled airfoil (_ = 13.87 °) and was used to examine

the k-_'s performance on an airfoil with a large separated region but in the absence

of shockwaves. Comparisons are made with the available experimental data 41 as well

as with the standard k-_z model. Figure (10.42) shows that the pressure distribution

is well predicted by both the current and k-w models. Although no skin friction data
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wasavailable,the experimentsof Colesand \Vadcock41showedseparationbeginning

between_ of .75-.80. Figure (10.43)showsthat the k-_ model predicts separation at

_-c= 0.81, in excellent agreement with experiment, while the k-w model predicts de-

layed separation and a somewhat smaller separated region. Figure (10.44) compares

the mean velocity profiles for a variety of _ stations throughout the separated region.

Again, prediction of the current theory is more consistent with the experiment.

The next set of comparisons (figures 10.45-10.47) involve a NACA 0012 (geometry

shown in figure 10.45) at an angle of attack, a of 8.34 ° and a free stream Mach number,

Mo_ = 0.55 compared with the experimental data of Harris 4_. All models predict the

pressure distribution well . An absence of skin friction data prevents a meaningful

discussion of which model is more accurate, however, it should be noted that both

the current and k-w models predict only one separated region while the J-K predicts

two. Figures (10.48-10.49) show the same airfoil at an angle of attack of 2.26 ° and a

transonic Mach number of 0.799. Both the current and J-K models give an accurate

prediction of the pressure distribution and show similar results for the skin friction.

The k-w model predicts delayed separation which is not consistent with experiment.

Figures (10.50-10.54) show the results for the RAE 2822 (geometry shown in

figure 10.50). For cases 9 and 10, we have compared with the experimental data of

Cook et. al. 4s ; no definitive angle of attack or Mach number corrections to account for

wall interference were given. As a result, the flow conditions assumed for these cases

were those used by Rumsey and Vatsa 44. For case 9 (Moo = 0.73, a = 2.80 °, Re --
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6.5x106),the flow is attachedand the k-_ model does a better job of predicting the

shock position and the pressure distribution. Figure (10.52) shows that all models

do a fair job of predicting the skin friction for this case. The next case (10) involves

shock induced separation. Both the k-_ and J-K do a good job of predicting both the

shock position and the skin friction. Note that the k-w model predicts both a delayed

shock and a milder separated region.

7.5 Cylinder-Flare

The Cylinder-Flare case was considered in order to examine the k-_ models ability

to accurately predict a complex three-dimensional supersonic flowfield. The geometry

for this case is shown in Fig.(10.55) along with the test conditions. A schematic of

the flare, along with the appropriate dimensions, are shown in Fig.(10.56). Also, in

order for the reader to get a general idea of the flowfield being considered, a sketch

of the postulated flowfield was provided in Fig.(10.57). This figure was taken from

Ref.[9]. From this figure it it seen that at the 8 = 0 ° plane, there is a small separated

region between the intersection of the cylinder and the offset flare. This separation

bubble turns the flow prior to reaching the juncture, and therefore, causes the oblique

shockwave to move upstream of the flare. Also, as you consider planes with increasing

0, the extent of the separation region grows, and therefore, the amount of upstream

influence is increased. This is due to the fact that as you progress from 8 = 0 ° to

8 -- 90 ° the flow becomes increasingly three-dimensional in nature due to the crossflow

caused by the offset flare.
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A few notesabout the solution procedure are warranted. First, in order to min-

imize the computational time required for this casethe problem wassplit into two

sections: an axisymmetric cylinder and a three-dimensional flare. A semi-infinite

cylinder wascomputed assumingaxisymmetric flow. At a given distance along the

cylinder the Z Cf, and 6 parameters were found to match the experimental results.Pt'

The profiles for velocity, temperature, pressure, k, and _ from this point on the cylin-

der were then used as initial profiles for the three-dimensional flare. Note, that for

the full three-dimensional case, a small cylinder (10 cm length) was run upstream of

the flare so that the initial profiles would not be affected by the upstream influence

generated by the flare. In other words, instead of running the full cylinder (90 cm)

in the three-dimensional code, only a smaller portion (10 cm) was considered. The

remaining 80cm was run using an axisymmetric assumption to reduce computational

time. The above procedure provided for a significant reduction in the number of grid

points required.

The solution procedure used was a four stage Runge-Kutta, explicit, central differ-

ence (standard Jameson Damping) code developed by Baurle 16. The grid contained

87 x 99 × 99 points in the x,y,z directions, respectively and was run with an initial

y+ of 0.3 and approximately twelve points in the sublayer (y+ < 10). Comparisons

of the current model are made with the k-e model as well as the data of Wideman et

al 9. The k-e results were obtained from Ref.[45].

Figures (10.58-10.60) show the pressure ratio for the O = 0°,90 °, 180 ° planes,
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respectively. The pressureratio is equal to the surfacepressureover the freestream

stagnation pressure. For the 0 = 0 plane both models accurately predict the initial

pressure rise upstream of the juncture. This indicates that, for this plane, both

models are accurately predicting the extent of the separation bubble. Downstream of

the juncture the k-( models shows a pressure rise which is in closer agreement with the

experimental data. Both models predict the asymptotic pressure region accurately.

For the 0 = 90 ° plane both models again do a good job of predicting the initial

pressure rise. Aft of the juncture both models overpredict the pressure ratio, but they

both return to acceptable levels in the downstream region. The 0 = 180 ° plane once

again shows that the k-( model does a slightly better job of predicting the pressure

ratio upstream of the juncture. Aft of the juncture the k-( models shows a slightly

larger peak, however, it returns to an acceptable level in the downstream region.

From the three previous figures it should be noted that the upstream influence is a

minimum at the 0 = 0 ° plane where very little crossflow velocity exists. It continually

increases until the 0 = 90 ° plane is reached at which point the upstream influence

is a maximum (noted by the distance between the juncture and the initial pressure

rise). This value then remains relatively constant until the bottom symmetry plane

is reached at 0 = 180 °.

Figures (10.61-10.63) show the skin friction coefficient (non-dimensionalization

uses free stream quantities) for the 0 = 0 °, 90 °, 180 ° planes, respectively. For the

0 = 0 ° plane the k-( model does a better job then the k-e in predicting Cf downstream
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of the juncture. The k-e model overpredicts the asymptotic value for skin friction.

The Cf for the 0 = 90 ° plane shows that both models mimic each other very closely,

however, they also significantly overpredict the skin friction data in the downstream

region. The validity of the experimental data for this plane has been called into

question by one of the co-authors of the original paper 46, and therefore, a meaningful

discussion of the results is not possible. It should be noted that even though the skin

friction data for this plane is being questioned, the pressure data remains valid 46.

The final figures shows the skin friction comparison for the 0 = 180 ° plane. The

k-( model slightly overpredicts the separated region, however, the model does an

excellent job downstream of the juncture.

In summary, the k-( model without damping functions has performed as well as

the k-e model which employs damping functions. Overall, good agreement is indicated

with the current model.
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8 Concluding Remarks

The current k-_" model has proven to be a noteworthy step towards the develop-

ment of a generalized three-dimensional turbulence closure model which can be used

in the calculation of practical engineering problems. This model overcomes a number

of limitations of existing two-equation models. First, the current model can accu-

rately predict the growth rates, velocity, and shear stress profiles for a variety of free

shear flows using only one set of closure coefficients and boundary conditions. Fur-

thermore, the k-( model allows for the solutions of a wall bounded flow and its wake

without a modification of the model constants or boundary conditions. Moreover,

the current model compares favorably to both the Johnson-King and k-w models for

the prediction of two-dimensional airfoils. For these airfoils, the current model does a

good job predicting skin friction and shock location, as well as the extent and location

of the separated regions. Also, the current form of the k-_ model is free of damping

functions and geometrical factors. With this development, one of the major obstacles

in applying the model to three-dimensional flows has been removed.

Because of the nature of the development process the current k-( model still

has one primary limitation. This is the models tendency to overpredict the eddy

viscosity around a strong shock wave. The reason for this limitation is due to the

fact that the pressure gradient term was calibrated for low speed flows (subsonic and

transonic airfoils) with relatively weak shocks. When the model was used for flows
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with strongshocks(Mach > 2.5)excessivevaluesof #t were generated, and therefore,

an overprediction of skin friction and heat transfer occur in the vicinity surrounding

the shock. It is to be noted that, near the shock, over 50% of the turbulent energy

production is a result of the work of the normal stresses. Since such stresses are

not well predicted by two-equation turbulence models it is possible that the observed

behavior of #t near a shock is a result of inaccuracies in the normal stresses. This

conjecture can not be ascertained without a solution based on a stress model.
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A Reynolds Stress Derivation

In order to determine governing equations for the Reynolds stresses, moments are

taken of the Navier-Stokes equations. This is accomplished by multiplying through

by the fluctuating property and taking the time average of the product.

The Navier-Stokes equations are re-written as

Oui aui Op 0 ( aui
_'(_') = P-5- + P_'a77.j+ ax--7- _bT, \axj

Oui Oui Op 02ui

+ i)xi ] (A.1)

(A.2)

=0 (A.3)

where Af is the Navier-Stokes operator. Take the following time average in order to

derive an equation for the Reynolds stress tensor,
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u,N(uA + _jnf(u,) = o (A.4)

Consider each term separately, starting with the unsteady term
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Combine Equations
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A.9 - A.21 to obtain the Reynolds Stress equation
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Rearrange the above equation into a more recognizable form.

(A.20)
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The above expression provides six new equations (one for each independent com-

ponent of the Reynolds Stress tensor) which must be solved in order to completely

determine the Reynolds stress tensor.
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B Turbulent Kinetic Energy
Derivation

The equation describing the turbulent kinetic energy (per unit mass) is obtained

by contracting the Reynolds Stress Eq.(A.23).

Orii _ 07i, OUi OCiim (B.1)
O'--"t + Urn_xm -- --2Tim OZ----'m+ fl£ii- ['Iii "_- OX-----_

O]g pgrn:L ON i (ii O [P_'i2i_'rn p, 2]_,i,.,_i ] (g.2)p-_+ -_-,m_ p + _;-azm 2 Oxm

Dk OUi peii a [pU'i_iU m #Ok ]
p--_ = T,._ + p'u'_ - (B.3)

By contracting the Reynolds stress equation we have reduced the tensor equation

to a scalar one for Tii. Since we are no longer dealing with a tensor equation, the

scalar eli will be replaced with e. For an incompressible flow the pressure dilatation

term, l'Iij , is zero and, therefore, if the Boussinesq approximation is used

vii = 2#tS 0 - _pk60 (B.4)

the k equation can be written in its standard form for an incompressible fluid.

ok ok oui o [. ok _ ,, , ]p'_ + pUm - • -- pc+ _puiuiu m- ' 'ozm r" Oz., _ L Oz,_ pure (B.5)

The above equation can be re-written in terms of the enstrophy as

Dk _ To OUi

Dt p Oxj
0 _<

l]e ijrn X J
(B.6)
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From the enstrophymodelingwe have

..-C7-Z2.,I

eprni 0 (UpUl) Ok

+ _ Oz_ Ozp
(B.7)

' ' -2utSpl+ 2kSpl
UpU l = _j

(B.8)

Therefore, after neglecting the higher order derivatives we obtain

= []o (_,_..)_ _.m, 0 Ok

Substitute the above to obtain the modeled k equation (in an incompressible

medium)

P-'_ + pUm_xm = Tim_OXm #_ + _X_ + _ _X_ (B.10)

In order to relate the above equation to other two-equation models we can relate

the dissipation e to the enstrophy, {.

e =- 2us_js_j (B.11)

..-T7C':7"_./

' ' 02 (uiuy) (B.12)
-" ZP--_ + OXiOXj

7
02 (UiUj)

= u_ + (B.13)
OxiOx3

or for a large Reynolds number the above can be re-written as

e=u_" (B.14)
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C Vorticity Derivation

Begin with the incompressible Navier-Stokes

Oui Oui Op Otij

P_ +_'_j o_,+ Ox-7
(c.i)

where

tij = 2#sij (c.2)

Re-write the above as

o--_ + uj Ozj Oz_]
Ouj Op + 0 [ ( Oui

+ _J-_, - o_, _ [\o_j ouj)Oxi

or

Oui Ouj Op O@jp-_ + 2riju) + uj Ozi Ozi + _ (2rij)
(c.4)

1

Where rij is the rotation tensor and can be re-written as

1
ri j --" __ -_ijkOJk

(c.5)

Now, substitute Equation C.5 into Equation C.4 to obtain

Oui Ouj

p-_ -- UjeijkWk + Uj _OXi --

0

op + ._E_=j(__,j_)OX i

(c.6)

which can be re-written as

Oui O[p uju:O---t- Oz, +

O 0.1k

-+- eijkUj_k -- Veijk OX----_
(c.7)
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From the definition of vorticity

OUk

Ogi = Qjk OXj
(c.s)

we see that in order to derive an equation for the vorticity you simply apply the curl

operator to the above form of the Navier-Stokes (Eq. C.7).

_"m_m\ ot j =-_"_o--gjm_ + +_"_0x--_(_'jk_j_)

0 (_,jkO_-'_"_' o--_ ggx,/ (c.0)

Note that the first term on the right hand side is zero from the multiplication of

(- _ 0- 2 j) and a skew-symmetric tensor (Qmi). Therefore, thea symmetric tensor _ ox,,,oxl

above reduces to

(c.10)
O---t= _l,,.,_j_ Oz,,. Oz., \ Ozj]

Apply the following identity

_lmieijk : _|j_rnk -- (_lk_rnj (c._1)

to obtain

Owt O(u,wm) O(UmWt) 0 [OWm_ 0 (OW,_ (C.12)
ot - Oxm Ox., _'Ox----g\ Ox,] + "_ toxin]

The above equation can be simplified by noting that the divergence of the curl (V x V)

is zero

Owm _ 0 (C.13)
Oxm
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and by switching the dummy indices to obtain the instantaneous incompressible vor-

ticity equation.

or

Dcoi Oui 02COl

Dt - c°J-_xj + Uc3xjOxj (C.15)
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D Enstrophy Derivation

Start with the instantaneous vorticity equation for an incompressible flow (see

Appendix C).

Dwi Oui 02wi
- wj-- + u (D.1)

Dt Oxj OzjOzj

The first step is to derive the fluctuating vorticity equation. This is done by de-

composing the instantaneous variables into a mean and a fluctuating component and

then applying a time average. This will provide an equation for the mean vorticity.

If you then subtract the mean equation from the instantaneous, you will obtain the

fluctuating vorticity equation.

_(_,, t) = _(_,) + _(x,, t)

Ui(Xi,t) = Ui(xi) + ttli(Xi,t)

(D.2)

(D.3)

Substitute Equations D.2- D.3 into Equation D.1 and apply a time average.

Ofti _ Of 2i Ow_ _ OUi Ou_ 02fti (D.4)
o-7-+u,_ + u_o_---7= aJa-g_j+_;_ +_o_,oxj

Df_i _ OUi 02fli Ou_ Ow_ (D.5)

_ OU_ 02fl, 0 ..-=r-zr.,

When the above equation is combined with the identity

(D.6)

OUi
fl, _ -- f_jSij (D.7)



66

the MeanVorticity equation for an incompressiblemediumis obtained.

,, _ 02_i

Multiply Eq. D.8 by fh to obtain an equation for _i_i (mean equation)

.-::r=r, a=fhD (f_ifh) = -2,i [ujw_- uiw,] + 2fhQjSij + 2ufti Ox_ (D.9)Dt

Multiply Eq. D.1 by wi to obtain an equation for oJiwi (instantaneous equation).

D Oui 02wi

Dt (wiwi)= 2wiwJ_Oxj + 2uwi Ox 2 (D.10)

Now decompose the above equation using Equation D.2- D.3 and apply a time average

to obtain

m

2f_ "Ou{ , , OU, Ou_
g/(a,a,) + _ b77z, a_j o.,

o_, o_; (o )

o [a,a, + m,_: + <<]

Now subtract the mean and instantaneous equations to obtain a relation for co[w_

t / l t I / t

____(wiwi)D' ' = -zuYi0--_z__"' iOf_i Oxja (ujwiwi) + 2wiwjsij + 2wiwjsij + 2f_jwisi j

05 ,, Ow_Ow_
+us-_-(w;_)ozm- zUb-Tjx.Oz,

The above is the incompressible enstrophy equation where the enstrophy

(D.11)

(D.12)

=w_w_ (D.13)

is the sum of the squares of the fluctuating vorticity components.
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E Modeling of the _ Equation

We begin with the incompressible Enstrophy equation (see Appendix D)

, , , 2wicojSij + 2coisijl2 j2a;iO.)jSij "Jr I I t I

02¢ Oco_Oco_ (E. I )
+U OxjOxj 2u-_xj Oxj

From Eq. E.1 we have six terms which require modeling.

! !

E.1 Modeling of _iuj

The first term is a second order tensor and is therefore re-written as the sum of a

symmetric and skew-symmetric tensor.

,, ,(,, ,,) '(,,__;_:)coiu j = -_ cz,uj + _zju i + -_ wiu j

= Aij -t- Bij

(E.2)

(E.3)

! !
E.I.1 Skew-Symmetric Portion of coiu j

The first step is to examine the Skew-Symmetric portion of the above term. This

is done by applying the following identity to Eq. E.3.

I !O(u,,ui) Ok! !

emiiwiuj - Oxi Oxm

= ern_jAij + emoBij

= 0 + e,_iiBii

(E.4)

(E.5)

(E.6)
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Solvethe abovefor Bij.

E.1.2
t /

Symmetric Portion of _iUj

(E.7)

_rUl.The next step is to consider the symmetric portion of i j

-- Oul ,
_U} = eiml_Uj

OXm

= u, \ oxm + &, ) + -T \ozm

(E.8)

(E.9)

Oxl)] (E.10)

(E.II)

# !
= Uj{irnlrlr n

(E.12)

u)r_,_ is a third order tensor. Therefore, in order to maintain the correct tensorial

notation this is modeled using the gradient diffusion assumption.

ut 0film (E.13)
Ujrlr a = 67 r

Combine Eqs. E.7, and E.13 to obtain

(E.14)
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E.2
Modeling of oxj

! I I

uja_,w_ is modeled using a gradient diffusion model.

-a 0¢
! 1, I

a¢ Oxj
(E.15)

(E.16)

E.3 Modeling of , , , a__a__'
CdiCdjSi j a U Oxi Oxj

Ow_ Ow_
" "-' - u ---_----" is modeled using the suggestions given in References [47, 38]

°2i_j _ij Oxj Oxj

I I I

wiwjsij - u
Oxj Oxj "r-

ZK 2

Zs;_

k

(E.17)

k 2

where 7 is the turbulent time scale and Rt is the turbulent Reynolds number ,-K"

The above term was developed for high turbulent Reynolds number and homogeneous

l l I

turbulence. Therefore, an additional term was added (for 02iOJjSij ) to account for low

Reynolds number and non-homogeneous effects.

w,., _, Ow_ Ow_ ¢_(fl f_ S.. t3s41 (E.18)
iwj_ij -- g OZj OXj -_ i j '3 V/-_t

Based on the research to date, the term that gave the most satisfactory results for

the airfoils under consideration was a result of vortex stretching. Because of this, the
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aboveterm, which wasmodeledassumingzero pressuregradient, in now modeledas

(Op_ 2 a

+ (E.19)

\ Oxl ]J

E.4 Modeling of coicoj''

coiaaj is modeled bv noting the appropriate tensorial notation.

tracted the right hand side must be equal to ( (from definition of ()

a,j(
¢oiooj = cta(bij + --_

-u{u'j 2_ ]bij = -_ + _ ij

where bij is the anisotropy tensor.

Also, when con-

(E.20)

(E.21)

! !

E.5 Modeling of wisij

! !

_oisq is modeled by noting the appropriate tensorial notation.

, ;ou, aul)] (E.22)Oxm

!

"- 8_j @ilmStml q- eilmrrnl) (E.23)

' ' (E.24)= 8ij_ilmrrn I

! ! , ,

The above tensor, sijrmt , is symmetric in 'ij' and skew-symmetric in ml, therefore,

is modeled as

(E.25)
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where,

f_ = _ (E.26)

! ! __

COiSij
pk

Qlm/3 8 t/ Ok O_

+ f_2 _ _ Oxm

Ok ,gff\
! _ &,.'t _f_i

OX m _ ] 1.1
(E.27)

Combine all of the above terms to obtain the incompressible Enstrophy equation.

( ])Dt - Oxj _ [ Oxj +_j +em'j Ox, Oxm

[( )] 2
o-oa,ajz, + ,,,m(""_ ( ok o¢

pk, a \ pk / _ _xl OXm

+--_ i a .,
(E.28)

where

k

nk- uv"_ (E.29)

This equation along with the Turbulent Kinetic Energy equation (see Appendix B)

- ri,_ 7---- #(" + +p-_ + pU.,Oxm ox,,, _ K (E.30)

comprises the current two equation model with the eddy viscosity calculated as

vt - (E.31)
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F Free Shear Layers

In order to solve the similarity form of the governing equations the momentum,

turbulent kinetic energy, and enstrophy equations must be solved simultaneously.

The momentum and turbulent kinetic energy equations are derived in Ref. [2] and

are reproduced here for convenience.

d_ q.J dq rf N = S_,l_ (F.1)

]2 dK 1 d [r_NdKi =Ski(+N(dlg) 2dr/ _?Jdrl [ ak dT? -_ - E (F.2)

where N is the non-dimensional eddy viscosity given by

g2(r/) (F.3)
N = C t, E(rl)

and K(rl) and E(r/) are the non-dimensional turbulent kinetic energy and enstrophy,

respectively. S_,, Sk, and Y are provided in Table 4.1 Ref. [2]. The solution procedure

used is that of Ref. [2] with the exception of replacing the e equation with the _"

equation. Therefore, since the momentum and turbulent kinetic energy equations

remain unchanged, the remainder of this appendix deals with the derivation of the

similarity form of the _ equation for the wakes, jets, and mixing-layers.

We begin with the enstrophy equation for a planar two-dimensional incompressible

flow and by using the standard boundary layer approximation or thin layer approach.



F.1

4_ u_ Ou 3

Plane Wake

2

+ 3/34_ _yy 3_'_ 3 _XX0y (_y_xx

73

(F.4)

E(,1) _ E(,7)

r] = a V Dx

The first step is to non-dimensionalize the equations (using the above) and re-write

the partial differential equation as a total differential equation.

dr] dr] [a; dr] J v/2 K + a3C_,K -_ + 5f14E

+4f16N5 d/d a (F.5)

The next step is to solve the ODE using the method described in Reference [2].

This includes applying the Rubel-Melnik transformation 48 to reduce the stiffness of

the equation set. This stiffness can be explained by noting that at the edge of the tur-

bulent region the equations become stiff because both k and _ approach zero. Since we

are not interested in solving the equations at the turbulent/non-turbulent interface,

we will shift this boundary to infinity by applying the Rubel-Melnik transformation.

d 0

d-_ = Ut_yy (F.6)
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or. in terms of the non-dimensional eddy viscosity

d d

d-_ = N d--_ (F.7)

From the above transformation, it is seen that as the eddy-viscosity approaches zero,

the { coordinate will approach infinity, therefore, we simply integrate the equa-

tions from the centerline out to some prespecified {max which occurs prior to the

turbulent/non-turbulent interface.

After applying the Rubel-Melnik transformation the equation for the plane wake

takes the form

(F.8)

A similar procedure is used for the Mixing-Layer and the jets.

F.2 Mixing Layer

_(x,y) = u,u(,7)

k(x,y) = ue_:(,7)

C_U1xKa(r 0
Ut : E(_)

v(_,v) = u, Iv + ,Tu]

U _
C(x, y) = _-_=E(r/)

N=C,,_--_E(,7)

V dE d [N_dE]
dr/ dr/ [a¢ dr/J

= liE
135 E 2

v'_ K

4Zsdg E 4 _33-_, drl + _/36N
(F.9)
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After the Rubel-Melnik transformation the aboveequation becomes

4 _sdK+o _4E 3 _u dr]

F.3 Jets (Plane, Round, and Radial)

(F.IO)

The two-dimensional axisymmetric form of the enstrophy equation is

o¢ o¢
u_+vjy-

a_ o_ [2_vRk __ - _ _4 yj

v _,t[;OuO2uor,. Oy Oy 2

0_2 1 0 r mou]
-+ Oy ymOy [vty --_y] +

1 0

ymOy[Ym( v

- 2_36_ k yi

(02u'_2_(10u'_ 2]

f_2 YJ -_x Oy

(vlI

oyOkO¢ ) (F'll)Ox

where the non-dimensionalization parameters are

u(z,y) =uou(,7)

u(,7) =
17'n

k(x,v)= U_K(_)

Pt = E(_)

,,(z,v) = uov(,1)

V(rl) = rlH - F2 j-1

¢(z, y)=
VX

N = _ __!_

co= ,-_-

j = 0, m = 0 Planar Jets (F.12)
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j = l, m = 0 Radial Jets (F.13)

j= 1, m=l Round Jets (F.14)

Substitute in the above and re-write in Dr. Wilcox's notation (1) = -2(J-t)F) to

obtain

vdE t e NdE [1 3(2_-')]+ + 2j
dT? qm d_ _Tm = lg E +

a" _E _ L,7_t,:(,_u+ v)-

-2_+N _ L,TJ_:(_u + v) - + _ (,Tu+ v)

+2-_- ( 4Nj _) [2JK dE 3E_---_K2j-t EdK1\,TJt,: (,Tu+ v)- - -[ dr] drl ]
(F._S)

After the Rubel-Melnik transformation the above equation becomes

l)--_dE rlmd_ld rl';--'-_ =lgEN 3(2J-t)] + + 2N2j

135 NE 2 134E -_ LrgK (_u + v)-v/-_K

-2_6 , l rnNJ 4]  7+NjL_--Y-Y('_u+v)-5-N + ,7; (,Tu+v)

(F.16)
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G Log Layer Analysis

The total shear stress is represented as the sum of the laminar and turbulent

stresses.

= + Tt (G.1)

From experimental measurements it has been determined that the laminar shear stress

accounts for approximately 5% of the total stresses in the log law region. Therefore,

in this region we will assume that the laminar shearing stresses are negligible when

compared to the turbulent shearing stresses. It is also noted that the total stress is

nearly constant in the log law region. As a consequence of the above assumptions we

will approximate the total shearing stress in the log law region as

= 7w (G.3)

where Tw represents the shear stress evaluated at the wall. Also from experiment, it

has been determined that the turbulent kinetic energy, k, is approximately constant

in the log law region. Therefore, we can represent the ratio of the turbulent shearing

stress to the turbulent kinetic energy as 49

Tt
= _ where, C u = 0.09 (structural factor) (G.4)-i

In the log law region the velocity profile is given from the law of the wall,

U + "_ llny+ + B (G.5)
t_
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where g is the Karman constant (_ .40) and B is a dimensionless constant (_ 5.0).

The velocity and normal distance in Eq. (G.5) were non-dimensionalized using the

friction velocity, u_, where

Therefore,

- (G.6)

U
U + : (G.7)

y+ _ u,y (G.8)
V

The Reynolds stress tensor in the log law region is approximated as

vt "_ - pu' v' (G.9)

dU

= #t dy (G.10)

where the eddy viscosity, _'t is given by

V t --
_ C,,k 2

p u¢
(G.11)

Combine the above relations to obtain

ut dU

k dy

rw

pk

2

(G.12)

(G.13)

(G.14)

k
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Therefore,

2

k -- ?_/"

v/-d-_. (C.]6)

Similarly, by solving for _ in the log law region we obtain

3

= _% (G.17)
u_;y

and the eddy viscosity becomes

ut = u,_cy (C.18)

Next we will examine the vorticity for a two-dimensional cartesian coordinate system.

cgum

_i = ei.Tk Oxj (G.19)

For two-dimensional flows the above reduces to

By also noting that

fh = fh = 0 (G.20)

(OV OU) (C.21)f_a= _ Oy

OU OV

yu_-->> 0--7 (c.22)

OU
==* _a _ - _-m__ (G.23)

yu

mU r

_y

Similarly, the mean strain rate is approximated as

(G.24)

1 (Oui Ouj_
s,, = _ \0x, + &,/ (c.25)



8O

10U

"_ 20y

?'1"/"

2Ky

(G.26)

(G.27)

and the component of the rotation tensor becomes

1 (G.28)

u_ (G.297

2ny

Substitute the above relations into the Enstrophy equation in order to obtain a rela-

tion between the constants.

3 I (G.30)--r---zOfli -u_

4 1

(' ' ') u.---L-__0 UjWiWi -- y2
Oxj va¢

,-----r-7- Ow_ Ow, _ _

wiwJso - u-Oxj Oxj 4gn2Y2

(X3U v

_S,_ - - 4pn2y2

u4 2
_flj 'q -r + 6-----'---= .4 3v_2y_ fl 3 vy2n =

(G.31)

(G.32)

(G.33)

(G.34)

(G.35)

Combine the above to obtain

y-'-_\2va¢ - 4v_2 4v_;2

+ 3vK2 ]

+hot = 0 (G.36)
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From a power series analysis we note that each of the above coefficients must be zero.

The _ term is considered a higher order term and is therefore neglected. Therefore,

the log-law analysis has provided us the following relation for the model constants.

6tz 2

_ = [3_5x/_ - 3a3_//_ -- 4_]4 -- 8_6] (G.37)
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H Boundary Layer Analysis

Begin with the Reynolds averaged equations of motion for an incompressible, two-

dimensional, planar flow

0Ui
0z---_-= 0 (H.1)

cgU_ cgU_ _ OP Ot,3 (H.2)
P--5-i-+ PUJo_j Oz, + 0_---_'

then by making the boundary layer assumptions the above equations reduce to the

standard form of the boundary layer equations

0Ui
-0

Oxi

OU OU OU OP

P---_ + PU-_x + PV-_y - Ox

(H.3)

o[+ _yy (# + #,) -_-y (H.4)

This equation set is parabolic in the x direction and, therefore, is solved using a

marching procedure as described in Reference [15]. This reduction in the complexity

of the equation set reduces the typical run times from several hours to approximately

one minute. This reduction in computational effort allows a wide variety of modeling

and closure coefficients to be tested.

The k-_ model was added to the Harris and Blanchard 15 boundary layer code

in place of an existing k-w turbulence model. The only difference in the solution

procedure used in the current research as compared to the original code 15 is seen



83

from the non-dimensionalizationof (, which uses

URN; C
{ - LR (H.5)

URLRPR
N_ - (H.6)

#R

where R, *, N_ represent a reference quantity, a non-dimensional quantity, and a

reference Reynolds number, respectively. The reference Reynolds number is used

to scale the Enstrophy in order to maintain numerical accuracy during the solution

procedure.
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I Near Wall Behavior of k and (

Consider the turbulence quantities as you approach a solid surface by expanding

the fluctuating velocity components in a power series

u'(y) = ao + aly + a2y 2 + aay 3 + ...

v'(y) = bo + bly + b2y 2 + bay 3 + ...

w'(y) = Co + cly + c2y 2 + c3y a + ...

(I.1)

Now impose the conservation of mass for an incompressible fluid

ou, Ou_
-- -- 0

Ox, Ox,

and the 'no slip' boundary condition

(1.2)

to obtain

u'(o) =v'(O)=w'(o)=0 (I.3)

u'(y) = aly + a2y 2 + aay 3 + ...

v'(y) = b2y 2 + bay 3 + ...

w'(y) = cly + c2y 2 + cay 3 + ...

(I.4)

Therefore, from the definition of turbulent kinetic energy we obtain

= koy 2 as y _ 0

(I.5)

(I.6)
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where ko is some constant.

A similar analysis is performed for the enstrophy at a solid surface.

_.2i03 i

ou_A" o___'_
= _,_k OXj earn OXl

toy) + t, o_,)

= (a T+c_) +...

(I.7)

(I.8)

(I.9)

=Go as y ---+O (I.i0)

where Co is some constant.
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J Homogeneous shear flows

A homogeneous shear flow

0 S 0

S# = S 0 0

0 0 0

is given by enforcing a linear velocity profile with no dependence on the x or z coor-

dinate directions. In other words, the following must be imposed

OU
_ = Constant (J.1)
yu

OU OU
- -0 (J.2)

Ox Oz

02U

Oy--_ = 0 (J.3)

where U is the mean velocity.

The above constraints reduce the k and ( equations to

-_- =ut -u¢" (J.4)

0¢ c_3Cuk(Ou) 2 13s(2v_ 3 0__yy 4_36Cuk20u 3 (J.5)
-_=----_- _YY (v'_'+_) + ¢fl4 +3 t,,2¢ Oy

Now apply the following non-dimensionalization (* superscript represent a non-

dimensional quantity)

k=kok" (J.6)
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¢*Sko
- (J.7)

2u

t_

t -- -- (J.8)
S

OU

S = -- (J.9)
Oy

to obtain

Ok* G(k')
Ot* _*

-_* (3.10)

c9_* o_3C.K* - fls(_*)2 _ 4 fl6C.(k*) 2
Or* - v_ (k* + _ + f14_* + 3 _* (J.11)

The above ODE's are solved using a fourth order runge-kutta integration scheme

to determine the decay rate of turbulence for a homogeneous shear flow. An initial

condition, corresponding to setting production equal to dissipation, gives a homoge-

neous shear parameter of sgo at t = 0, to begin the integration.
l!o

It should be noted that many modelers use this type of flow to calibrate closure

coefficients, however, since we were primarily interested in wall bounded shear flows

and free shear layers we chose not to use the decay of homogeneous turbulence as a

method of determining constants. Instead, we used homogeneous shear flow as a test

case for the current two-equation model.

The data from our test case includes an examination of the shear parameter (_),

anisotropy tensor (bij), and the predicted decay rates of k and _ as per suggestion of

Reference [37].
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K Free Stream Boundary
Condition

In this case, the equation governing k and ( can be written as

where

dk
- v(

dt
3

d( (_
" 1

(K.1)

(K.2)

R t -

k 2 1 vt

u2( C. u
(K.3)

Dividing Eq. (K.1) by Eq. (K.2) gives

dk k 5v
- -- (K.4)

d( _35_ +/_5( ½

Equation (K.4) is a first order linear equation. Its solution can be written as

k = 25v (½ + C(_ (K.5)
(Z5- 2)

where C is a constant to be determined from initial conditions. It can be seen from

Eq. (K.5) that

k 25 C [_ _
- + --(\N-_} (K.6)

_(½ (Z5- 2)

For 95 = 2.37, the above equations show that as ( --_ 0, Rt and vt increase without

bound. Therefore

C=0 (K.7)
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and initial valuesof ( must be chosensuch that

26 )2_'A,: C, Rt <_ C, (3s - 2) (K.8)

Thus, for decaying homogeneous turbulence k and < approach zero in such a way that

remains constant. This, in turn, implies that during the decay process

¢ o<k2 (K.9)

Substituting Eq. (K.9) into (K.1) yields

koct -1 , (o(t -_ (K.10)
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L Final k-_ Equation Set

The final form for the modeled k-( equations can be written as

_,Ox,_,_+_/ _ _ _
2 o _4_rijf_f_j

RkP_s+d_ _ + (o_3p(bij + _ -op() SO kFt

- 2_f_ftj /_TP_t f_ S-_---_ i j ij

+ max Ox, ' uPcr, (1 + 5p)

(L.1)

(L.2)

where

Tii= 2#t
k 2

S 2 = SzjS, j , f_2 = _,f_

P T , C1=0.60 ,

1 _ 1 eukU j
ro p u?

k
Rk = Rt = R 2

C¢1 = 2.10
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9 Tables

Table 9.1: Free Shear Flow Spreading Rates

Flow Enstrophy Epsilon Measured

Far Wake 0.3130 0.256 0.365

Mixing Layer 0.1054 0.098 0.115

Plane Jet 0.1143 0.109 0.100 - 0.110

Round Jet 0.0906 0.120 0.086 - 0.095

Radial Jet 0.0965 0.094 0.096 - 0.110

Table 9.2: Turbulence Model Closure Coefficients - Original

I Constants k-

c_3 0.35

_4 0.42

_ 2.37

_6 0.10

_7 1.50

_s 1.15

ap 0.6

ap 5.6
± 1.80

1.46
a¢

Ct, _ 32.0

C_2 32.0
6 0.i0
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Table 9.3: Turbulence Model Closure Coefficients- Final

Constants

_3

34
&
36

_8

Gr

Gp

Gp
1

ak
1

a;

6

0.35

0.42

2.37

0.10

1.50

1.15

0.07

0.065

91.9

1.80

1.46

0.10

Table 9.4: Cases Considered

] Flat Plate Mach # Re Grid

[[ 0.20 9.0x106 NAx201 (BL code)

[I Airfoil Mach # Re AOA Grid

NACA 0012 0.50 2.91x106 2.06 ° 287x81

NACA 0012

RAE 2822

RAE 2822

RAE 2822

NACA 4412

NACA 0012

NACA 0012

RAE 2822 (case 9)

O.799

0.73

0.73

0.73

0.20

0.55

0.799

0.73

9.0x106

6.5x106

6.5x106

6.5x106

1.5x106

9.0x106

9.0x106

6.5x106

6.2x106

0.00 ° 287x81

2.80 ° 321x91

2.80 ° 231x51

2.80 ° 143x41

13.87 ° 237x91

8.34 ° 287x71

2.26 ° 287x71

2.80 ° 321x91

RAE 2822 (casel0) 0.75 2.72 ° 231x61

Cylinder-Flare Mach # Re Grid

2.89 15.0x106 87x99x99
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Figure 10.50: Airfoil geometry for RAE 2822
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